Learning data-driven discretizations for partial differential equations
نویسندگان
چکیده
منابع مشابه
Data-driven discovery of partial differential equations
We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large ...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Two-scale Finite Element Discretizations for Partial Differential Equations ∗1)
Some two-scale finite element discretizations are introduced for a class of linear partial differential equations. Both boundary value and eigenvalue problems are studied. Based on the two-scale error resolution techniques, several two-scale finite element algorithms are proposed and analyzed. It is shown that this type of two-scale algorithms not only significantly reduces the number of degree...
متن کاملPreconditioning discretizations of systems of partial differential equations
This survey paper is based on three talks given by the second author at the London Mathematical Society Durham Symposium on Computational Linear Algebra for Partial Differential Equations in the summer of 2008. The main focus will be on an abstract approach to the construction of preconditioners for symmetric linear systems in a Hilbert space setting. Typical examples that are covered by this t...
متن کاملNonlinear damped partial differential equations and their uniform discretizations
We establish sharp energy decay rates for a large class of nonlinearly first-order damped systems, and we design discretization schemes that inherit of the same energy decay rates, uniformly with respect to the space and/or time discretization parameters, by adding appropriate numerical viscosity terms. Our main arguments use the optimal-weight convexity method and uniform observability inequal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2019
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1814058116